[1] Multi-object Tracking via Discriminative Embeddings for the Internet of Things. IEEE Internet of Things Journal. 2023, 10(12): 10532-10546. (SCI中科院一区Top期刊,IF=10.238). 第一作者
[2] Multi-object tracking via deep feature fusion and association analysis. Engineering Applications of Artificial Intelligence. 2023, (SCI中科院一区,IF= 7.802). 第一作者
[3] 基于双融合框架的多模态3D目标检测算法. 电子学报. 2023. (accepted, EI收录, CCF A类期刊). 通讯作者
[4] 基于全局自适应有向图的行人轨迹预测. 电子学报. 2022, 50(8): 1905-1916. (EI收录, CCF A类期刊). 通讯作者
[5] Deep Learning-based 3D Multi-Object Tracking Using Multimodal Fusion in Smart Cities. Human-centric Computing and Information Sciences. 2023. (accepted, SCI中科院一区Top期刊, IF=6.558). 第一作者
[6] 图像与点云多重信息感知关联的三维多目标跟踪. 中国图象图形学报. 2023. (accepted, 图像图形领域T1级期刊). 通讯作者
[7] GSTA: pedestrian trajectory prediction based on global spatio-temporal association of graph attention network. Pattern Recognition Letters. 2022, 160: 90-97. (SCI中科院三区, IF=5.1). 通讯作者
[8] Object detection method based on global feature augmentation and adaptive regression in IoT. Neural Computing and Applications. 2021, 33(9): 4119-4131. (SCI中科院三区, IF=6.0). 第一作者
[9] QoS intelligent prediction for mobile video networks: a GR approach. Neural Computing and Applications. 2021, 33(9): 3891-3900. (SCI中科院三区, IF=6.0). 通讯作者
[10] Efficient and Accurate Object Detection for 3D Point Clouds in Intelligent Visual Internet of Things. Multimedia Tools and Applications. 2021, 80(20): 31297-31334. (SCI收录). 第一作者
[11] Pedestrian Detection Algorithm Based on Video Sequences and Laser Point Cloud [J]. Frontiers of Computer Science. 2015, 9(3): 402-414 (SCI 中科院二区,IF=4.064). 第一作者
[12] DLFusion: Painting-Depth Augmenting-LiDAR for Multimodal Fusion 3D Object Detection. ACM MM. 2023. (accepted, CCF A类会议).
[13] 融合多尺度特征和多重注意力的水下目标检测[J]. 农业工程学报, 2022, 38(20):129-139. (EI期刊,中国科协农林领域 T1 级期刊). 第一作者
[14] 基于两阶段深度网络的输电线路异常目标检测方法[J]. 控制与决策. 2022, 37(7): 1873-1882. (EI期刊). 第一作者
[15] 基于时域扩张残差网络和双分支结构的人体行为识别[J]. 控制与决策. 2022, 37(11): 2993-3002(EI期刊). 通讯作者
[16] 基于多重信息融合与轨迹关联修正的多目标跟踪方法[J]. 控制与决策, 2023(EI期刊). 通讯作者