师资队伍

硕士生导师

当前位置: 首页 -> 师资队伍 -> 硕士生导师 -> 正文

136EF

王殿辉

职称: 教授
学院: 数据科学学院
电子邮箱:dh.wang@deepscn.com
  • 基本信息

  • 项目

  • 获奖

  • 论文

  • 专利

  • 课程

  • 教材或专著

  • 基本信息
    姓名:  王殿辉                                    最高学位:博士                                                  入职科大时间:2025.4          
    主要研究方向:随机配置学习机理论、工业大数据建模与分析、小概率重要事件预测                                                       导师类别:博士生导师          
    国内外重要学术组织任职:Industrial Artificial Intelligence (Springer)创刊人、执行主编,《IEEE Transactions on Fuzzy Systems》、《Information Sciences》、《WIREs Data Mining and Knowledge Discovery》副主编,中国人工智能学会工业人工智能专业委员副主任委员、中国人工智能学会教育工作委员会常务委员。
    学习研究经历:
    1995/09-1997/08:新加坡南洋理工大学,博士后
    1992/03-1994/12:东北大学,工业自动化,工学博士
    1989/09-1991/12:东北大学,应用数学,理学硕士
  • 项目
    [1]科技部2030新一代人工智能重大专项,数据驱动的深度随机配置网络学习理论,2019年12月-2024年12月,课题负责人
  • 获奖
    [1]2016年入选北京市火炬计划海外高层次人才
    [2]2019年入围国家重大人才计划(创新长期)
  • 论文
    [1]Gang Dang, Dianhui Wang*, Online self-learning fuzzy recurrent stochastic configuration networks for modeling nonstationary dynamics, IEEE Transactions on Fuzzy Systems (Early Access), 2025.
    [2]Gang Dang, Dianhui Wang*, Self-organizing recurrent stochastic configuration networks for nonstationary data modelling, IEEE Transactions on Industrial Informatics (Early Access), 2025.
    [3]Dianhui Wang*, Gang Dang, Fuzzy recurrent stochastic configuration networks for industrial data analytics, IEEE Transactions on Fuzzy Systems, 33(4), 1178-1191, 2025.
    [4]Gang Dang, Dianhui Wang*, An improved fuzzy recurrent stochastic configuration network for modeling nonlinear systems, IEEE Transactions on Fuzzy Systems, 33(4), 1265-1276, 2025.
    [5]Dianhui Wang*, Pengxin Tian, Wei Dai, Gang Yu, Predicting particle size of copper ore grinding with stochastic configuration networks, IEEE Transactions on Industrial Informatics, 20(11), 12969-12978, 2024.
    [6]Yongxuan Chen, Dianhui Wang*, An improved deep kernel partial least squares and its application to industrial data modeling, IEEE Transactions on Industrial Informatics, 20(5), 7894-7903, 2024.
    [7]Kang Li, Junfei Qiao*, Dianhui Wang*, Online self-learning stochastic configuration networks for nonstationary data stream analysis, IEEE Transactions on Industrial Informatics 20 (3), 3222-3231, 2023.
    [8]Kang Li, Junfei Qiao, Dianhui Wang*, Fuzzy stochastic configuration networks for nonlinear system modeling, IEEE Transactions on Fuzzy Systems 32 (3), 948-957, 2023.
    [9]Changqin Huang, Qionghao Huang, Dianhui Wang*, Stochastic configuration networks based adaptive storage replica management for power big data processing, IEEE Transactions on Industrial Informatics 16 (1), 373-383, 2019.
    [10]Ming Li, Dianhui Wang*, 2-D stochastic configuration networks for image data analytics, IEEE Transactions on Cybernetics 51 (1), 359-372, 2019.
    [11]Dianhui Wang*, Ming Li, Stochastic configuration networks: Fundamentals and algorithms, IEEE Transactions on Cybernetics 47 (10), 3466-3479, 2017.
    [12]Hui Yang, Yating Fu, Dianhui Wang*, Multi-ANFIS model based synchronous tracking control of high-speed electric multiple unit, IEEE Transactions on Fuzzy Systems 26 (3), 1472-1484, 2017.
    [13]Sarwar Tapan, Dianhui Wang*, A further study on mining DNA motifs using fuzzy self-organizing maps, IEEE Transactions on Neural Networks and Learning Systems 27 (1), 113-124, 2015.
    [14]Weitao Li, Dianhui Wang*, Tianyou Chai, Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45 (2), 303-314, 2014.
    [15]Dianhui Wang*, Sarwar Tapan,A robust elicitation algorithm for discovering DNA motifs using fuzzy self-organizing maps,IEEE Transactions on Neural Networks and Learning Systems 24 (10), 1677-1688, 2013.
    [16]Weitao Li, Dianhui Wang*, Tianyou Chai, Flame image-based burning state recognition for sintering process of rotary kiln using heterogeneous features and fuzzy integral, IEEE Transactions on Industrial Informatics 8 (4), 780-790, 2012.
    [17]Yongfu Wang, Dianhui Wang*, Tianyou Chai, Extraction and adaptation of fuzzy rules for friction modeling and control compensation, IEEE Transactions on Fuzzy Systems 19 (4), 682-693, 2011.
    [18]Runyi Yu, Dianhui Wang*, On impulsive modes of linear singular systems subject to decentralized output feedback, IEEE Transactions on Automatic Control 48 (10), 1804-1809, 2003.
    [19]Runyi Yu, Dianhui Wang*, Algebraic properties of singular systems subject to decentralized output feedback, IEEE Transactions on Automatic Control 47 (11), 1898-1903, 2002.
    [20]Dianhui Wang*, Paul Bao, Robust impulse control of uncertain singular systems by decentralized output feedback, IEEE Transactions on Automatic Control 45 (3), 500-505, 2000.
    [21]Dianhui Wang*, C. B. Soh, On regularizing singular systems by decentralized output feedback, IEEE Transactions on Automatic Control 44 (1), 148-152, 1999.
  • 专利
    [1] 授权国家发明专利:低比特随机配置网络轻量计算方法、系统、设备及终端(授权号:202310942736.X)
    [2]授权国家发明专利:随机向量函数链神经网络权重交替迭代更新方法及系统(授权号:202310946757.9)
    [3]授权国家发明专利:一种深度递归随机配置网络工业过程精准预测方法和系统(授权号:202311743288.7)
    [4]授权国家发明专利:基于递归随机配置网络的工业过程实时预测方法及系统(授权号:202311746570.0)
    [5]授权国家发明专利:一种可解释型的随机配置模糊推理系统、构建方法及终端(授权号:202310946727.8)
    [6]授权国家发明专利:一种磨矿粒度软测量方法、系统、介质、设备及终端(授权号:202310946767.2)
    [7]授权国家发明专利:基于改进随机配置算法的神经网络模型训练方法及系统(授权号:2023109936798)
    [8]授权国家发明专利:一种基于正则化递归随机配置网络的动态建模方法和系统(授权号:202311746574.9)
  • 课程
    [1]本科生课程,人工智能
  • 教材或专著